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BACKGROUND. Sepsis remains a major clinical challenge for which successful treatment 
requires greater precision in identifying patients at increased risk of adverse outcomes requiring 
different therapeutic approaches. Predicting clinical outcomes and immunological endotyping 
of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell 
phenotyping. Here, we sought to determine whether functional immune responsiveness would 
yield improved precision.

METHODS. An ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular 
production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 
academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.

RESULTS. Compared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ 
expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. 
However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression 
was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions 
in total number of IFN-γ–producing cells and amount of IFN-γ produced per cell (all P < 0.05). 
Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day 
mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients 
with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 
concentrations, consistent with an immunosuppressed endotype.
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Introduction
Sepsis remains one of  the most common causes of  critical illness and too often leads to death and mor-
bidity (1–3). Importantly, sepsis is a pathophysiologic host response to microbial infection associated with 
organ injury and dysfunction (4). However, the nature and magnitude of  the host response to sepsis is 
highly variable, depending on the individual’s age, comorbidities, and source and severity of  microbial 
infection. Although sepsis is frequently associated with an early exaggerated inflammatory response (5), 
persistent inflammation (6, 7), coagulopathy (8), prolonged immunosuppression (3, 6, 9–12), and lean tis-
sue wasting (13, 14), the contribution of  these individual responses to the overall outcome of  the patient 
is still unresolved (15, 16). Precision medicine has been proposed as a tool to identify which immunologic 
endotype drives organ injury and is an appropriate target for therapeutic intervention (17). Biomarkers, 
based on static blood cell phenotypes, protein, and transcriptomic metrics, have been commonly used to 
endotype critically ill patients with and without sepsis (15, 17–20).

The enzyme-linked immunosorbent spot (ELISpot) assay is a widely used immunological technique 
that enables the detection and quantification of  individual cells responding to external receptor-specific and 
nonspecific stimulants and secreting specific proteins, particularly cytokines (21). This method is import-
ant for studying the immune response at the single-cell level, offering valuable insights into immune cell 
function and immune-related diseases. Its ability to analyze immune responses at the cellular level makes 
it particularly suitable for monitoring immune system functionality in sepsis. In the current report, we 
examined the extent to which whole-blood ELISpot production of  interferon γ (IFN-γ) can identify immu-
nosuppressed, critically ill patients at increased risk of  death.

Results
Patient characteristics. Demographic characteristics of  the 175 enrolled patients (99 men [57%] and 76 wom-
en [43%]) and 46 healthy control participants (16 men [36%], 30 women [64%]) are summarized in Table 
1. The overall cohort included 107 and 68 patients with a suspected diagnosis of  sepsis admitted to the sur-
gical/trauma ICU (SEPSIS) and critically ill, nonseptic (CINS) cohorts, respectively. Consistent with NIH 
reporting requirements, 80%, 76%, and 78% of  the SEPSIS, CINS, and healthy participants, respectively, 
defined themselves as White; 14%, 19%, and 7% as African-American; 0%, 3%, and 13% as multiracial; 
and less than 1% as either Native American, Pacific Islander, or Asian, with the exception of  healthy par-
ticipants, among which 9% defined themselves as Asian. In addition, 97%, 100%, and 87% of  the SEPSIS, 
CINS, and healthy participants, respectively, defined themselves as non-Hispanic.

Patient characteristics were similar across all 3 cohorts, with the exception that the healthy control 
participants were more predominantly female and younger, and SEPSIS patients had a higher Charlson 
comorbidity index than CINS participants (Table 1). Within the CINS cohort (n = 68), the reasons for ICU 
admission are identified in Supplemental Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.175785DS1.

Table 2 shows clinical outcomes for the SEPSIS and CINS patients. Hospital length of  stay (P < 0.02), 
incidence of  secondary infections (P < 0.001), development of  chronic critical illness (CCI) (P < 0.001), 
and in-hospital mortality (P < 0.01) were all significantly higher in SEPSIS than in CINS patients. Dispo-
sition at discharge also significantly differed between SEPSIS and CINS patients, as did 30- and 180-day 
mortality (both P < 0.01).

IFN-γ production by unstimulated and anti-CD3/anti-CD28 mAb–stimulated whole blood. Comparison of the first 
sample collected (days 1–3 after ICU admission) among the 3 cohorts revealed considerable heterogeneity in 
the individual response, irrespective of the cohort. Surprisingly, as a group, spontaneous IFN-γ production in 

CONCLUSIONS. A whole-blood IFN-γ ELISpot assay can both identify septic patients at increased 
risk of late mortality and identify immunosuppressed septic patients.
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unstimulated whole blood was significantly increased from SEPSIS and CINS patients compared with healthy 
participants at all sampling intervals (days 1, 4, and 7), despite a significant reduction in lymphocyte numbers 
(Figure 1 and Supplemental Figure 1). This was reflected generally by an increased number of IFN-γ–produc-
ing cells (spot-forming units [SFU]) (all P < 0.05), although the amount of IFN-γ produced by each cell (spot 
size [SS]) was increased on day 4 (Figure 2). When the total number of IFN-γ–producing cells was adjusted for 
the absolute lymphocyte count (ALC), the percentage of lymphocytes expressing IFN-γ was further increased 
significantly in both SEPSIS and CINS (P < 0.001; Supplemental Figure 2). There was no difference in unstim-
ulated IFN-γ expression between the SEPSIS and CINS cohorts.

Ex vivo stimulation of  the whole blood from the 3 cohorts with agonistic anti-CD3/anti-CD28 mAb 
resulted in expected increases in the total expression (TE) of  IFN-γ produced when compared with unstim-
ulated samples. There were also increase in the total amount of  IFN-γ produced per unit volume of  blood 
on days 4 and 7 when comparing CINS with healthy participants (Figure 1). This increased IFN-γ expres-
sion was only seen on day 4 in SEPSIS patients.

Relationship between ELISpot measurements and clinical outcomes. SEPSIS patients had a greater in-hospi-
tal, 30-, and 180-day mortality when compared with CINS patients (Table 2). In addition, the incidence 
of  secondary infections, development of  CCI, and an adverse discharge disposition were all significantly 
greater in SEPSIS than CINS patients (all P < 0.05).

SEPSIS patients who died within 180 days of  ICU admission did not differ from surviving patients 
based on their admission or day 1 sequential organ failure assessment (SOFA) scores or total leukocyte num-
bers, even though nonsurviving SEPSIS patients were significantly older and had higher Charlson comorbid-
itiy scores (both P < 0.05; Supplemental Table 2). Interestingly, there were marked differences in the IFN-γ 
production from stimulated whole blood between sepsis patients who survived or did not survive 180 days. 
Both the absolute number (SFU) and percentage of  IFN-γ–producing cells, and the SS were significantly 
lower, and therefore, TE was reduced in nonsurviving versus surviving SEPSIS patients (all P < 0.05; Figure 
3). This reduction in expression was, in general, sustained through day 4 in nonsurvivors (Figure 3). After 
7 days, there were too few ICU-remaining patients to continue the comparison (data not shown). Surpris-
ingly, IFN-γ production from unstimulated whole blood did not differ between surviving and nonsurviving 
patients at any time point (data not shown). There also did not appear to be any significant changes in ELIS-
pot responses (both stimulated and unstimulated) over time in either surviving or nonsurviving individual 
SEPSIS patients (data not shown).

Univariate and multivariate prediction models for long-term survival and secondary outcomes. Because of  
the differences in IFN-γ expression between surviving and nonsurviving SEPSIS patients, ELISpot area 
under the receiver operating characteristics curve (AUROC) values were evaluated for their discriminato-
ry prediction of  long-term survival (180 days), as well as secondary outcomes, and compared to clinical 
indices (SOFA, Charlson comorbidity scores), total white blood cell and ALCs, and plasma protein 
markers (selected cytokines, procalcitonin, and soluble PD-L1 [sPD-L1]) in the SEPSIS patients. Similar 
combined SEPSIS and CINS analyses could not be performed due to the low mortality in CINS patients. 
Results are presented in Table 3 and Figure 4.

Similar to data reported by ourselves and others (22–24), the most consistent discriminator of  180-day 
mortality was the Charlson comorbidity score (AUROC 0.824, 95% CI 0.700–0.948), which also discrim-
inated in-hospital mortality (AUROC 0.762, 95% CI 0.611–0.912) and development of  CCI (AUROC 
0.713, 95% CI 0.594–0.832), but not the incidence of  secondary infection (AUROC 0.549, 95% CI 0.426–
0.673). Importantly, stimulated total IFN-γ expression on day 1 and day 4 did not significantly differ 
from the Charlson comorbidity score, with AUROCs of  0.730 (95% CI 0.601–0.859) and 0.794 (95% CI 
0.691–0.897), respectively. Total IFN-γ expression on day 4 also discriminated in-hospital mortality, with 
an AUROC of  0.743 (0.615–0.830), but it was not a strong discriminator of  either development of  CCI or 
incidence of  secondary infections.

For total stimulated IFN-γ expression, the components contributing to its discriminative power for 
180-day mortality were both the number of  IFN-γ–producing cells (SFU) (day 1: AUROC 0.707, 95% 
CI 0.568–0.846) and the amount of  IFN-γ produced by individual cells (SS) (day 1: AUROC 0.707, 95% 
CI 0.568–0.846).

The discriminatory power of  the ELISpot TE for predicting both in-hospital and 180-day mortality was 
much greater than seen for either ALC, IL-6, or procalcitonin on either day 1 or day 4, or for changes in 
these parameters between days 1 and 7 (Table 3). In addition, the last ELISpot measurement obtained from 
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the patient prior to discharge or death (usually day 7 or later) was also found to be not as discriminatory as 
the earlier day 1 and 4 measurements (data not shown).

Setting the threshold for day 1 and day 4 stimulated total IFN-γ expression at approximately 80% sensitivi-
ty to discriminate 180-day survival, it was possible to assess the immunosuppressive endotype of those SEPSIS 
patients with reduced ELISpot TE (Table 4). These individuals were older and had ALCs significantly lower at 
both days 1 and 4 than SEPSIS patients above the ELISpot threshold. In addition, plasma sPD-L1 concentra-
tions were significantly higher on day 4. Patients below the ELISpot threshold also had development of CCI at 
a markedly higher frequency than those individuals above the threshold (see odds ratios in Table 4).

Finally, to examine whether ELISpot could improve the discriminatory power of  standard clinical 
indices (SOFA and Charlson comorbidity scores), single and multivariate logistic regression analyses were 
performed and the AUROCs of  the models were calculated by a 4-fold cross-validation procedure (Table 
5). Model I was built on baseline Charlson comorbidity data and day 1 SOFA scores, yielding AUROCs 
for 180-day mortality (AUROC 0.911, 95% CI 0.858–0.965); the odds ratios show that baseline Charlson 
comorbidity data and day 1 SOFA scores are significant predictors for 180-day mortality (Table 5). Model 
II was built on stimulated total IFN-γ expression from day 4, yielding AUROCs for 180-day mortality 
(AUROC 0.794, 95% CI 0.732–0.855); the odds ratios show that stimulated total IFN-γ expression is a 
significant predictor for 180-day mortality (Table 5). Although ELISpot data show significant odds ratios 
in Model II, the addition of  stimulated total IFN-γ expression to the model built on standard score indices 
(Model III) did not significantly increase either the AUROC or the odds ratio for 180-day (AUROC 0.915, 
95% CI 0.851–0.979) or in-hospital mortality (AUROC 0.883, 95% CI 0.801–0.964), or development of  
CCI (AUROC 0.861, 95% CI 0.830–0.892) (Table 5).

Discussion
Key findings. This prospective, multicenter observational study has demonstrated that the adaptive 
immune response to critical illness, as defined by ex vivo whole blood production of  IFN-γ in response to 
T cell receptor stimulation, varied in response to critical illness (Figures 1 and 2) and could also discrim-
inate long-term outcomes (Figure 4 and Table 3). Spontaneous IFN-γ production by diluted whole blood 
was significantly increased in critically ill patients, irrespective of  whether the critically ill patients were 

Table 1. Clinical characteristics of patient cohorts and healthy control participants

CINS (n = 68) SEPSIS (n = 107) Healthy control (n = 46) P value
Male, n (%) 37 (54%) 62 (58%) 16 (35%) 0.0283
Age, years 59 (37–67) 63 (51–71) 47 (30–62) <0.0001
BMI, kg/m2 27.3 (22.8, 33.9) 28.0 (22.7, 34.8) N/C 0.718

SOFA score, baseline 6 (4–8) 6 (4–10) N/C 0.718
SOFA score, day 1 5 (3–8) 5 (3–8) N/C 0.983
SOFA score, day 4 3 (1–6) 3 (1–7) N/C 0.468

Charlson comorbidity score 2 (0–4) 3 (1–4) 2 (0–2); n = 19 0.0045
Total leukocyte counts

WBC (× 103/mL) 9.3 (7.2–12.6) 12.8 (8.9–18.6) 6.5 (5.5–7.5) <0.0001
Monocytes (%) 6.9 (5.2–9.2) 4.6 (3.0–7.1) 6.9 (6.1–8.0) <0.0001

Monocytes (× 103/mL) 0.7 (0.4–0.9) 0.7 (0.4–1.0) 0.4 (0.4–0.6) 0.0210
Neutrophils (%) 78.1 (71.9–86.3) 86.1 (81.5–91.4) 59.0 (55.2–64.2) <0.0001

Neutrophils (× 103/mL) 7.2 (5.1–10.6) 10.9 (7.7–15.8) 3.7 (2.8–4.6) <0.0001
Lymphocytes (%) 12.4 (7.2–17.5) 6.0 (4.3–9.0) 29.4 (25.6–35.2) <0.0001

Lymphocytes (× 103/mL) 1.1 (0.7–1.5) 0.9 (0.5–1.4) 1.9 (1.5–2.3) <0.0001
Plasma proteins

IL-10 (pg/mL) 18.3 (14.7–20.7) 20.0 (14.8–26.3) 17.4 (13.6–20.8) 0.059
IL-6 (pg/mL) 43.5 (20.7–102.3) 50.0 (23.3–187.8) 5.8 (5.0–6.9) <0.0001

sPD-L1 (pg/mL) 157 (100–229) 204.7 (125.0–311.7) 78.5 (66.5–93.7) <0.0001
Procalcitonin (ng/mL) 253 (72–748) 1006 (274–2538) 42 (31–52) <0.001

Patients included 2 cohorts of individuals admitted to the ICU, one presumed to be septic (SEPSIS), a second presumed to not be septic, but critically ill 
and at risk of developing sepsis (CINS). Values are medians and interquartile range (IQR) obtained at time of admission to the ICU. N/C, not collected.

https://doi.org/10.1172/jci.insight.175785
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septic. In addition, when whole blood was stimulated ex vivo with a T cell receptor agonist, IFN-γ production 
increased dramatically in both healthy and critically ill cohorts (both SEPSIS and CINS). However, stimulated 
ELISpot IFN-γ TE early in the admission to the ICU significantly differed between SEPSIS patients who 
survived 180 days and those who died, and this reduction in total expression in nonsurviving SEPSIS patients 
was due to both reductions in the total number of IFN-γ–producing blood cells and the amount of IFN-γ 
produced by individual cells (Figure 3). Importantly, day 1 and day 4 measurements were more discriminatory 
than later measurements. Using univariate modeling, stimulated ELISpot TE measured in the first week of  
admission (sampling days 1 and 4) could differentiate 180-day mortality as well as SOFA and Charlson comor-
bidity scores, and markedly better than blood ALC, procalcitonin, IL-6, and sPD-L1 concentrations (Table 3). 
SEPSIS patients who had low stimulated ELISpot total IFN-γ expression on days 1 and 4 had an immunosup-
pressed endotype, as reflected in being older, and having lower ALCs, higher plasma sPD-L1, and increased 
incidence of chronic critical illness, in-hospital mortality, and late mortality (Table 4). However, in multivariate 
models, stimulated ELISpot total IFN-γ expression did not significantly improve the discrimination between 
180-day survival in models built with SOFA and Charlson comorbidity scores (Table 5).

Context. ELISpot has emerged as a powerful method to assess immunological status in a variety of  clin-
ical disorders (25–28), including septic and critically ill patients (20, 21, 29, 30). It offers several theoretical 
advantages over other current metrics — for example, cell phenotypes such as ALC (31–34) and HLA-DR 
expression on CD14+ blood cells (35, 36); plasma protein concentrations such as procalcitonin (37–40), 
IL-6 (41–43), and sPD-L1 (44, 45); or blood transcriptomics (24, 46, 47) — used to predict both the severity 
of  the host response and the immunosuppressed endotype. ELISpot, unlike these static measures, assesses 
one component of  the functional status of  the host protective immune response. In the present study, ELIS-
pot revealed the capacity of  T cells in the blood to produce IFN-γ with and without stimulation through the 
T cell receptor. In addition, unlike other assays (such as ELISA or the ELLA automated multiplex ELISA 
platform), ELISpot can distinguish between the number of  cells producing a key cytokine and the amount 
of  cytokine produced by an individual blood cell.

This study is not the first to demonstrate reduced IFN-γ ELISpot expression in septic patients, especial-
ly in those with adverse clinical outcomes (20, 21, 48, 49). However, in contrast to these previous studies, 

Table 2. Clinical course and clinical outcomes in SEPSIS and CINS cohorts

CINS (n = 68) SEPSIS (n = 107) P value
LOS, days (IQR) 10 (7–14), n = 66 13 (7–21), n = 106 0.016

ICU LOS, days (IQR) 5 (2–9), n = 67 4 (2–10) 0.904
Secondary infection 17 (29%), n = 59 52 (59%), n = 88 0.0003
Favorable discharge 52 (76%) 61 (57%) 0.0018

CCI 3 (4%) 15 (14%) 0.074
In-hospital mortality 1 (1.5%) 14 (13%) 0.0102

30-Day mortality 1 (1.5%) 12 (11%) 0.0173
180-Day mortality 3 (4.4%) 18 (17%) 0.0160

Disposition at discharge
 Home 25 (37%) 27 (25%) 0.104
 LTAC 0 4 (3.7%) 0.017
 IPR 17 (25%) 12 (11%) 0.104

 Hospital 0 2 (1.9%) 0.406
 Other 2 (2.9%) 2 (1.9%) 0.319
 SNF 10 (15%) 21 (20%) 0.007

 Residential facility 0 0 1.000
 Home with services 10 (15%) 21 (20%) 0.843

 AMA 2 (2.9%) 1 (0.93%) 0.561
 Death 1 (1.5%) 14 (13%) 0.0102

 Hospice facility 1 (1.5%) 2 (1.9%) 1.000
 Home with hospice  0 1 (0.93%) 1.000

Sample sizes are identified in column headings except where missing values are noted for specific indices. LOS, length 
of hospital stay; LICUS, length of ICU stay; CCI, chronic critical illness; LTAC, long-term acute care facility; IPR, inpatient 
rehabilitation; SNF, specialized nursing facility; AMA, discharged against medical advice.

https://doi.org/10.1172/jci.insight.175785
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we used diluted whole blood in our ELISpot assay instead of  isolated PBMCs and observed increased 
IFN-γ production in both unstimulated and stimulated whole blood from critically ill patients. There are 
2 key advantages of  using diluted whole blood in the ELISpot. First, the use of  whole blood permits 
the assay to take place with the entire blood composition (i.e., all leukocytes, erythrocytes, platelets, and 
plasma proteins and metabolites) maintained. Responses to critical illness and ex vivo stimulation may be 
either direct or be mediated via cell-cell communication and/or plasma mediators. Traditional processing 
of  blood by density gradient centrifugation separates PBMCs from neutrophils, platelets, and plasma. Sec-
ond, it is a simpler and more rapid assay to set up because there is no required cell isolation step.

Figure 1. Unstimulated and stimulated IFN-γ expression as determined by ELISpot in SEPSIS and CINS patients and 
healthy control participants on days 1, 4, and 7 following ICU admission. Values represent medians and individual 
subject responses. (A–C) IFN-γ expression in unstimulated whole blood. (D–F) IFN-γ expression in anti-CD3/anti-CD28–
stimulated whole blood. Note that the scales for unstimulated expression are logarithmic, whereas they are linear for 
stimulated expression to appropriately reflect the magnitude and heterogeneity of the individual response. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, as determined by Kruskal-Wallis ANOVA and post hoc analyses using Dunn’s 
test. Values are 2 sided and represent raw P values. SFU, spot-forming units; SS, spot size; TE, total IFN-γ expression.

https://doi.org/10.1172/jci.insight.175785
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On days 1–7, both the CINS and SEPSIS patients had reduced ALC, as compared with healthy con-
trols (Supplemental Figure 1). Surprisingly, despite this lymphopenia, the number of  lymphocytes spon-
taneously producing IFN-γ was higher in both CINS and SEPSIS patients versus healthy controls at all 3 
time points (Figure 1). Day 1 stimulated IFN-γ SFU, SS, and TE did not differ between cohorts. However, 
on day 4, both the number of  cells producing IFN-γ as well as TE of  IFN-γ was higher in both the CINS 
and SEPSIS cohorts, as compared with healthy controls. On day 7, the number of  cells producing IFN-γ 
remained higher in the CINS and SEPSIS cohorts. Of  note, the amount of  IFN-γ produced on a per-cell 
basis (reflected by SS) was lowest in the SEPSIS cohort, with TE similar to healthy controls.

Figure 2. ELISpot SFU and SS from unstimulated whole blood in the 3 cohorts (healthy participants, SEPSIS, and CINS). 
(A–C) IFN-γ SFU. (D–F) IFN-γ SS. In unstimulated whole blood, SEPSIS and CINS cohorts demonstrated a consistent increase 
in the number of cells (SFU) producing IFN-γ, when compared with healthy control participants. *P < 0.05, ***P < 0.001, 
****P < 0.0001, as determined by Kruskal-Wallis ANOVA and post hoc analyses using Dunn’s test. Values are 2 sided and 
represent raw P values. SFU, spot-forming units; SS, spot size; TE, total IFN-γ expression.
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Given the considerable amount of data showing sepsis can evolve into an immunosuppressed state, it 
was surprising to see both the spontaneous and stimulated IFN-γ production increase in septic patients (early 
after admission) versus healthy controls. There are several likely explanations for this apparent paradox. The 
first potential explanation relates to timing; specifically, the data presented herein came from blood samples 
collected within the first 7 days after ICU admission. It is difficult to determine exactly when the sepsis-induced 
hyperinflammation transitions to a state of immunoparalysis, but it is tempting to speculate that our assessment 
of immune fitness was still within the window of hyperinflammation and exacerbated immune cell activity.

A second explanation has been termed “bystander activation” (50, 51). The inflammatory response 
that develops during infection has a capacity to trigger antigen-experienced effector and/or memory CD8+ 

Figure 3. Anti-CD3/anti-CD28–stim-
ulated IFN-γ expression by ELISpot 
in sepsis patients measured 1, 4, 
and 7 days after ICU admission who 
survived or did not survive 180 days. 
(A–C) Spot number. (D–F) Spot size. 
(G–I) Total IFN-γ expression. Values 
represent medians and individual 
responses. The number of participants 
declined over time as patients were 
either discharged from the ICU or died. 
*P < 0.05, **P < 0.01, ***P < 0.001, as 
determined by Kruskal-Wallis ANOVA 
and post hoc analyses using Dunn’s 
test. Values are 2 sided and repre-
sent raw P values. SFU, spot-forming 
units; SS, spot size; TE, total IFN-γ 
expression.

https://doi.org/10.1172/jci.insight.175785


9

C L I N I C A L  M E D I C I N E

JCI Insight 2024;9(2):e175785  https://doi.org/10.1172/jci.insight.175785

T cells present in a T cell receptor–independent and cytokine-dependent manner. A number of  cytokines, 
including IL-12, IL-15, TNF-α, and IL-18 induce CD8+ T cell activation and resultant IFN-γ production 
(52). Thus, the sepsis cytokine milieu likely primes preexisting, effector and memory CD8+ T cells to pro-
duce IFN-γ in a cognate antigen–independent fashion (Figure 1). In addition, these cytokine-primed effec-
tor/memory CD8+ T cells will also respond with IFN-γ production to a myriad of  cytokines produced ex 
vivo during anti-CD3/anti-CD28 stimulation.

A third explanation may lie in the differences in the lymphocyte subsets present in the peripheral blood 
of  healthy participants versus CINS and SEPSIS patients at the time of  blood collection. De novo clonal 
expansion of  pathogen-specific effector CD8+ T cells in response to sepsis-inducing pathogens and resultant 
inflammation leads to the potential for a preponderance of  actively responding effector cells — especially 
early in the septic timeline. In contrast, healthy control volunteers are more likely to have resting naive and 
memory T cells and a minimal (if  any) increase in inflammatory cytokines. Consequently, the number of  
T cells capable of  rapidly responding to polyclonal and/or bystander cytokine stimulations and produce 
IFN-γ in the ELISpot assay is increased in SEPSIS patients compared with healthy participants.

Current work. The current studies add to the body of  information suggesting ELISpot examination of  
whole blood production of  IFN-γ can both discriminate long-term mortality and identify those patients 
who may benefit from therapeutic interventions targeting adaptive immunity. With that said, 2 questions 
remain unanswered. The first is the cellular identity of  IFN-γ production determined by the ELISpot assay. 
Although IFN-γ can be produced by a number of  blood leukocyte subsets, unpublished data from consor-
tium members suggest T cells, especially memory phenotype T cells, are the principal cells within the blood 
compartment producing IFN-γ in response to CD3/CD28 ligation. Secondly, the studies do not identify 
how IFN-γ production is suppressed in nonsurviving SEPSIS patients in response to anti-CD3/anti-CD28 
mAb stimulation. Again, data from consortium members and others suggest that blood myeloid-derived 
suppressor cell (MDSC) numbers are increased in septic patients, with adverse outcomes (20, 53–55). 
Unpublished findings show the coculture of  autologous blood MDSCs from septic patients with T cells 
activated with anti-CD3/anti-CD28 mAbs suppress not only IFN-γ but also Th1, Th2, and Th17 cytokine 
production. Such findings reported here suggest the reduced IFN-γ production measured by the ELISpot 
assay can be due to a reduced number of  IFN-γ–producing memory T cells, and/or IFN-γ expression by 
memory T cells may be actively suppressed, at least in part, by circulating MDSCs.

Table 3. Selected AUROC discrimination for primary outcome variables in the SEPSIS cohorts

Criterion Time point 180-Day mortality In-hospital mortality Secondary infection CCI
Age Baseline 0.68 (0.54–0.81) 0.42 (0.28–0.57) 0.48 (0.35–0.60) 0.62 (0.46–0.77)

Charlson comorbidity score Baseline 0.82 (0.70–0.95) 0.76 (0.61–0.91) 0.55 (043–0.67) 0.71 (0.59–0.83)
SOFA Baseline 0.72 (0.57–0.88) 0.72 (0.55–0.88) 0.59 (0.46–0.71) 0.65 (0.49–0.81)

Day 1 0.76 (0.62–0.90) 0.76 (0.60–0.92) 0.65 (0.53–0.77) 0.76 (0.66–0.87)
Day 4 0.79 (0.65–0.93) 0.83 (0.67–0.98) 0.68 (0.56–0.80) 0.84 (0.74–0.93)

ELISpot stimulated IFN-γ TE Day 1 0.73 (0.60–0.86) 0.69 (0.55–0.84) 0.56 (0.44–0.69) 0.60 (0.45–0.75)
Day 4 0.79 (0.69–0.90) 0.74 (0.61–0.87) 0.51 (0.37–0.65) 0.62 (0.43–0.81)

ELISpot stimulated IFN-γ SFU Day 4 0.74 (0.60–0.88) 0.65 (0.47–0.84) 0.52 (0.39–0.66) 0.64 (0.47–0.82)
ELISpot stimulated IFN-γ SS Day 1 0.71 (0.57–0.85) 0.68 (0.51–0.85) 0.56 (0.44–0.69) 0.56 (0.41–0.71)

Day 4 0.66 (0.53–0.79) 0.70 (0.55–0.85) 0.60 (0.47–0.73) 0.52 (0.36–0.68)
Lymphocytes stimulated IFN-γ 

TE (%)
Day 1 0.68 (0.53–0.83) 0.62 (0.42–0.81) 0.58 (0.45–0.71) 0.53 (0.38–0.69)

Day 4 0.60 (0.45–0.76) 0.54 (0.32–0.75) 0.65 (0.52–0.78) 0.58 (0.34–0.71)
Absolute lymphocyte count Day 1 0.63 (0.45–0.81) 0.53 (0.31–0.75) 0.58 (0.50–0.72) 0.46 (0.27–0.65)

Day 4 0.67 (0.52–0.81) 0.64 (0.48–0.80) 0.64 (0.51–0.77) 0.65 (0.47–0.84)
sPD-L1 Day 4 0.67 (0.53–0.80) 0.68 (0.52–0.84) 0.59 (0.45–0.73) 0.57 (0.38–0.77)

IL-6 Day 4 0.63 (0.47–0.79) 0.56 (0.37–0. 75) 0.64 (0.50–0.77) 0.62 (0.43–0.8)
IL-10 Day 4 0.62 (0.45–0.79) 0.51 (0.31–0.72) 0.60 (0.46–0.73) 0.57 (0.43–0.71)

IL-8/CXCL8 Day 4 0.60 (0.45–0.75) 0.64 (0.49–0.79) 0.46 (0.33–0.60) 0.68 (0.54–0.83)

Values represent the mean and 95% CI for the primary outcome variables: 180-day mortality, in-hospital mortality, incidence of secondary infection, and 
development of chronic critical illness (CCI). Scores in bold are values equal to or greater than 0.74. TE, total expression; SFU, number of spot-forming units; 
SS, spot size.
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Limitations. This study has several limitations. Despite multicenter enrollment, sample sizes were still 
relatively small for discriminative modeling. Over the past 2 decades, improved in-hospital management 
has reduced the number of  adverse events and in-hospital mortality to sepsis and critical illness (23, 56). 
Discriminatory analyses could only be conducted in the SEPSIS cohort, as CINS patients had very low 
in-hospital (1%) and 180-day mortality (4%) (Table 2). Second, every effort was made to match healthy 
control participants to the SEPSIS and CINS cohorts, but the healthy donors used in this study were, as 
a group, significantly younger and more frequently female (Table 1). Median ages in the healthy control 
cohort were greater than 45 years, a break point often determined to be associated with increased adverse 
outcomes in critically ill patients (23). Despite the multicentric nature of  the study, the cohorts still were 
also predominantly White. Finally, the SEPSIS and CINS patients were recruited from surgical and trauma 
ICUs, and therefore represent preponderantly hospital-acquired sepsis. As such, these findings will require 
confirmation in other sepsis cohorts.

Future directions. While the findings presented herein suggest assessing IFN-γ production by ELISpot 
can be useful in identifying septic patients at risk of  long-term mortality and the immunosuppressed endo-
type, its discriminative ability is similar to that of  SOFA and Charlson comorbidity indices and does not 
add significantly to their discriminative power. With that said, SOFA and Charlson comorbidity indices 
are rarely used for clinical decision making because they provide no therapeutic directions or insights into 
the immunological disturbances associated with sepsis and adverse outcomes. Application of  ELISpot to 
the clinical armamentarium has the potential to provide important information regarding which septic 
patients would benefit from targeted therapy (precision medicine). For example, septic patients who have 
profound suppression of  stimulated IFN-γ production may be harmed by therapy with corticosteroids, but 
might be good candidates for immune-adjuvant therapies to boost their ability to combat invading patho-
gens. ELISpot is an FDA-cleared approach for assessing functional immune status to prior tuberculosis 
infection and the ELISpot reader used in these studies (CTL S6 Entry) is FDA 510(k) cleared. However, 
to make these results more actionable, ELISpot results will need to be obtained within hours, instead 
of  days. Currently, ELISpot results take at least 24 hours to return, although preliminary data from our 
consortium suggest the assay can be modified to produce results in less than 12 hours (TSG and CCC, 
unpublished observations).

Figure 4. Area under 
the receiver operator 
curves (AUROC) for 
physiologic (SOFA, 
Charlson comorbidity 
scores) and stimu-
lated IFN-γ ELISpot 
responses in differ-
entiating in-hospital 
and 180-day mor-
tality. (A) SOFA and 
Charlson comorbidity 
index. (B) Selected 
ELISpot parameters 
discriminating 180-day 
mortality. (C and D) 
Same as for A and B 
but discriminating 
in-hospital mortality. 
TE, IFN-γ ELISpot total 
expression; SFU, IFN-γ 
ELISpot spot-forming 
units; SS, IFN-γ ELIS-
pot spot size.
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In addition, ELISpot can be readily used to assess other components of the blood innate and adaptive 
immune response simply by varying the stimulant and the readout metric. For example, innate immune responses 
have been readily assessed using endotoxin or other TLR ligands as a whole-blood stimulant and TNF-α as the 
readout (20, 21). Furthermore, underlying mechanisms of adaptive or innate immune responses can be explored 
using alternative stimulants (28, 29, 57), simultaneous adjuvants or inhibitors (58), or different readout metrics 
(21, 57).

Conclusions. ELISpot can assess functional immune status in critically ill patients, predict adverse long-
term outcomes, and identify subsets of  patients who may benefit from immunostimulant therapy.

Methods
This multicenter, prospective diagnostic and prognostic study, conducted between February 23, 2021, and 
July 22, 2022, enrolled 2 cohorts of  critically ill patients at the time of  ICU admission. The first cohort 
included patients with a suspected diagnosis of  sepsis admitted to the surgical/trauma ICU (SEPSIS). 
The second cohort included critically ill patients admitted to the ICU without currently suspected sepsis 
(CINS), but considered at high risk for subsequent infection (e.g., postoperative, severe trauma). Patient 
enrollment is shown in Figure 5, consistent with Enhancing the Quality and Transparency of  Health 
Research Standards for Reporting of  Diagnostic Accuracy (STARD) reporting guidelines (59). All patients 
were managed under institutional clinical management protocols.

Blood was obtained using heparinized blood collection tubes (Becton Dickinson) within the first 3 days 
of  ICU admission (labeled as day 1), and on subsequent days 3 through 5 (labeled as day 4), and weekly 
thereafter (±2 days). Self- or proxy-reported race and ethnicity category data were collected as per NIH 
reporting guidelines and requirements.

Inclusion criteria consisted primarily of  ICU admission with sepsis from either severe trauma, non-
trauma, postoperative ICU admission, ICU transfer from the emergency department, and inpatient transfer 
from ward to ICU (see Supplemental Table 1 for admission reasons). A small proportion of  patients were 
admitted directly from the emergency department with suspicion of  community-acquired sepsis.

Table 4. Evidence of immunosuppression in SEPSIS patients with reduced stimulated IFN-γ total expression (TE), as discriminated by 
ELISpot on days 1 and 4 after ICU admission

Day 1 ELISpot IFN-γ TE <2334/μm2 n = 65 ELISpot IFN-γ TE ≥2334/μm2 n = 40 P value

Age 64.2 (14.7) 54.6 (15.1) 0.002
Total WBC day 1 (× 103/mL) 13.9 (7.07) 15.7 (7.77) 0.158

Absolute lymphocyte count day 1 (× 103/mL) 0.980 (0.249) 1.160 (0.600) 0.028
sPD-L1 day 1 (pg/mL) 315 (333) 263 (246) 0.311
IL-10, day 1 (pg/mL) 32.3 (70.0) 28.6 (37.7) 0.608

Outcome Odds ratio
180-day mortality 23.1% 7.5% 3.70 (1.00–13.7)

In-hospital mortality 18.5% 5.0% 4.30 (0.91–20.3)
CCI 18.5% 7.5% 2.79 (0.74–10.6)

Second infection 59.6% (6 missing) 58.8% (13 missing) 1.03

Day 4 ELISpot IFN-γ TE <1755/mm2 n = 41 ELISpot IFN-γ TE ≥1755/mm2 n = 51 P value
Age 66.2 (14.0) 58.1 (15.7) 0.011

Total WBC day 4 (× 103/mL) 13.6 (6.93) 15.4 (8.18) 0.305
Absolute lymphocyte count day 4 (× 103/mL) 0.707 (0.197) 1.910 (0.580) 0.006

sPD-L1 day 4 (pg/mL) 337 (248) 239 (290) 0.007
IL-10 day 4 (pg/mL) 42.7 (89.9) 24.0 (27.7) 0.086

Outcome Odds ratio
180-day mortality 29.3% 5.9% 6.62 (1.72–25.5)

In-hospital mortality 19.5% 5.9% 3.88 (0.96–15.7)
CCI 22.0% 7.8% 3.30 (0.94–11.7)

Second infection 58.8% (12 missing) 56.4% (7 missing) 1.10 (0.44–2.80)

The threshold for reduced TE was set at 80% sensitivity. On day 1, the specificity was 42.1% and on day 4 the specificity was 63.2%. Data are presented as 
mean and SD or mean and 95% CI (for odds ratios).
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Sepsis was defined according to Sepsis-3 criteria (4), and all participants were clinically adjudicated at the 
individual participating sites. Patients admitted to the ICU for CINS were also adjudicated to rule out sepsis. A 
detailed summary of inclusion and exclusion criteria is provided in the Supplemental Methods. Individual criteria 
for inclusion as CINS and sources of infection in the SEPSIS cohort are summarized in Supplemental Table 1.

Healthy control participants were recruited at each of  the clinical sites. Efforts were made to match the 
healthy control participants’ age, sex, and race/ethnicity to those of  the SEPSIS cohort. Individuals with 
autoimmune diseases being treated with biologic immune modulators were excluded, as were individuals 
who had received antineoplastic therapies or diagnosed with cancer within the previous 6 months. Vulner-
able populations were also excluded.

Primary outcomes and clinical adjudication. The primary clinical outcome for ELISpot was 180-day mortal-
ity, determined via clinical records and telephone follow-up with the patient, their proxy, or their designated 
contact, and cross-checked through the US Social Security Death Index. We analyzed temporal trends of  
ELISpot in both SEPSIS and CINS patients but compared estimated performance of  predictive models pri-
marily in the SEPSIS patients, as 180-day mortality in the CINS cohort was less than 4%. Final SEPSIS or 
CINS adjudication was performed by individual physician-investigators at each clinical site at completion of  
each patient’s hospital course according to Sepsis-3 criteria. Over the course of  the study, 18 patients initially 
assigned to SEPSIS were adjudicated as CINS, and 6 CINS patients were adjudicated as SEPSIS.

Secondary clinical outcome variables included all-cause (in hospital, 30-day) mortality, develop-
ment of  CCI, secondary infections, and poor discharge disposition. Inpatient clinical trajectory was 
defined as “early death,” “rapid recovery,” or “CCI.” CCI was defined as an ICU length of  stay of  14 or 
more days with evidence of  persistent organ dysfunction (SOFA score ≥ 2) (60). Hospitalized patients 
who died after an ICU length of  stay greater than 14 days from the index hospitalization were also 
classified as CCI. Poor disposition was defined as discharge to a skilled nursing facility, long-term acute 
care facility, or hospice. Secondary infections were defined as per the US Centers for Disease Control 
and Prevention criteria.

ELISpot. ELISpot assays were conducted using the human IFN-γ Immunospot kit (CTL Inc.) with several 
important modifications, including the use of diluted whole blood as previously described (21). Specifically, 
100 mL of heparinized whole blood was diluted 1:10 with kit buffer and 50 mL of the diluted sample was 
added to each well. Samples were incubated in wells containing either buffer alone or a soluble anti-CD3/anti-
CD28 (125 ng/mL and 1.25 μg/mL, respectively) mAb agonist (BioLegend). Samples were assayed in dupli-
cate. Optimal concentrations of agonist were determined in preliminary studies (see Supplemental Methods).

Samples were quantified using a CTL S6 Entry or S6 FluoroCore ELISpot reader at each clinical site. 
To assure comparable results, the instruments were harmonized by CTL Inc. prior to the study using an 
external standard across all 5 clinical sites. Results are presented as the number of  SFU, SS (μm2), and 
TE (μm2), a product of  the number of  spots and mean spot size using the Immunospot SC software suite 
(version 7.0.30.4). SFU represents individual blood cells expressing IFN-γ and SS is an indication of  the 
amount of  IFN-γ produced per cell. In subsequent analyses, the number of  IFN-γ–producing cells was 
adjusted for each individual patient’s ALC to yield the percentage of  total lymphocytes expressing IFN-γ.

Table 5. Multivariate logistic regression to discriminate time to mortality based on Charlson 
comorbidity and SOFA scores and day 4 ELISpot stimulated IFN-γ total expression in SEPSIS patients

Odds ratio P value

Model I: Standard clinical indices only

SOFA score day 4 1.30 (1.12–1.50) 0.0003
Charlson comorbidity score baseline 1.48 (1.24–1.77) <0.0001

Model II: ELISpot indices only

ELISpot IFN-γ TE day 4 (–log) 1.44 (1.07–1.95) 0.017

Model III: Standard clinical indices + ELISpot indices

SOFA score day 4 1.28 (1.11–1.49) 0.0008
Charlson comorbidity score baseline 1.48 (1.22–1.79) <0.0001
ELISpot IFN-γ TE day 4 (–log) 1.29 (0.90–1.85) 0.165

Data are expressed as mean and 95% CI.
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Figure 5. Flow diagram for study enrollment. SPIES, Stratifying Patient Immune Endotypes in Sepsis study.
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Additional laboratory analyses. Whole-blood total leukocyte counts and ALCs were determined on 
EDTA-anticoagulated whole blood at the individual clinical sites either using their hospital’s Clinical and 
Diagnostics Laboratory or a research Beckman-Coulter Dx500 or Dx900 hemocytometer. Cytokine and 
additional plasma protein analyses were conducted at the University of  Florida Sepsis and Critical Illness 
Research Center (SCIRC) where they were determined in batch using the Luminex MagPix platform with 
commercial reagents.

Data collection and analysis. Clinical data collection was conducted at each site and entered into a web-
based electronic case report form created on the REDCap platform managed by the University of  Florida 
Clinical and Translational Science Institute (CTSI). Access to the case report form was password protected 
and limited to only approved research staff, and all interactions with the database were recorded. Peer-to-
peer communication allowed approved individuals at all 5 sites access to their own data and deidentified 
data from the other 4 clinical sites. Research data, including ELISpot, total leukocyte counts and ALCs, 
and plasma protein and cytokine data were uploaded into the case report forms from the University of  
Florida SCIRC. Data managers at the SCIRC were responsible for creating final locked data sets for sub-
sequent analysis.

Statistics. Descriptive data are presented as frequencies and percentages, medians and interquartile ranges, 
and means and standard deviations, where indicated. Fisher’s exact test and Mann-Whitney or Kruskal-Wal-
lis ANOVA tests were used for categorical and continuous variables, respectively. AUROC values with 95% 
CIs (computed with 2000 stratified bootstrap replicates) were used to assess discrimination. Univariable and 
multivariable logistic regression were performed to assess whether the combination of  metrics improved over-
all performance. Post hoc tests were performed for continuous outcomes using Dunn’s test. For post hoc 
analyses of  categorical outcomes, separate 2 × 2 Fisher exact tests were performed. All significance tests were 
2-sided, with a raw P value of  0.05 or less considered statistically significant. Analyses were performed using 
the R Project statistical package, version 4.1.0 (R Project for Statistical Computing; https://www.r-project.
org/).

Study approval. Centralized ethics approval was obtained from the University of  Florida Institutional 
Review Board (IRB 202000924), which served as the sponsoring institution for this multicenter clinical 
study. Written informed consent was obtained from each patient or their proxy decision maker at individual 
clinical sites.

Data availability. Deidentified clinical data and excess plasma samples are stored at the Biorepository of  
the Clinical and Translational Science Institute (https://www.ctsi.ufl.edu/research/laboratory-services/
ctsi-biorepository-2/) where it is available to the scientific community under guidelines promulgated by the 
National Institute of  General Medical Sciences (NIGMS). Data associated with the main manuscript and 
supplement material — including values for all data points shown in graphs and values behind any reported 
means — are available in the Supporting Data Values Excel (XLS) in the supplemental material.
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